
Benefits of Using Linear and Log RGB Data as Inputs
to Deep Networks for Computer Vision Tasks

Kexin (Heather) Hao
DREAM research program

8/17/2023

Abstract
In recent years, the field of computer vision has witnessed remarkable advancements,

largely attributed to the utilization of deep neural networks. As researchers continue to explore
avenues to enhance the performance of these networks, the role of input data representation
has gained prominence. This paper investigates the benefits of employing linear and logarithmic
RGB data transformed from readily accessible sRGB color space images in the JPEG file format
as inputs to deep networks for computer vision tasks. Drawing inspiration from previous work
that highlights the potential advantages of logarithmic RGB data, we present a comprehensive
study encompassing experimental methodologies, encountered challenges, and insights gained
during the research process. Our findings shed light on the intricate interplay between data
representation, neural network architecture, and preprocessing techniques, offering valuable
insights for researchers and practitioners in the field.

1. Introduction

Deep neural networks have emerged as cornerstones of modern computer vision

applications, achieving remarkable feats in image classification, object detection, and more. A

critical aspect influencing the performance of these networks is the choice of input data

representation. An extensively studied and important aspect is the retention of physics in the

input data. The principles governing the phenomenon of reflection and the process of capturing

images through sensors adhere to well-established laws of physics that have undergone

thorough examination in the domains of computer vision and related disciplines. Foundational

research has focused on the representation of surface appearances and the analysis of

reflective attributes.1 Subsequent investigations have delved into leveraging the constraints and

frameworks derived from physics to partition images, classify objects, detect highlights, compute

lighting conditions, and discern shadows.2 All these works underscore the significance of

physics presented in images for completing various computer vision tasks. As a result, linear

and logarithmic RGB data, which preserve the physics of the world, offer significant potential



benefits in improving the network's ability to learn meaningful features and generalize to diverse

scenarios. For example, a 2020 study by Chen demonstrated that using linear RGB data as

input to their network can lead to improved performance in recovering details from low-light

scenes.3

Capturing images in RAW format is a relatively straightforward process, and both

Android and Apple phones possess the capability to capture and process RAW images.4

However, a challenge arises when using RAW images in deep learning for computer vision.

Many prevalent datasets utilized for deep learning in computer vision consist solely of

preprocessed images, lacking access to the original linear data. This situation is common

across various widely used datasets, including ImageNet5, COCO6, Pascal VOC7, Faces in the

Wild8, and Intrinsic Images in the Wild9. Even datasets designed for specific tasks, such as

highlight detection, which were historically tackled using physics-based approaches, resort to

assembling datasets from web-acquired images.10 Given these circumstances, there exists a

potential advantage in transforming processed images into the linear RGB or log RGB color

spaces, which could lead to performance enhancements in computer vision tasks where raw

images are not readily available. Inspired by previous work that underscores the potential

benefits of log RGB data,17 we embark on a research journey to comprehensively investigate

these advantages.

In this study, I delve into the exploration of using linear and logarithmic RGB data

transformed from JPEG sRGB images as inputs to deep neural networks for computer vision

tasks. Through iterative experimentation, architectural refinements, and considerations in data

preprocessing, I aimed to achieve the best results in the CatsOrDogs task across all three data

formats. The rationale behind selecting the CatsOrDogs task and dataset stems from the fact

that the images within the dataset are captured under various lighting conditions. This selection

offers a unique opportunity to gain valuable insights into the practical implications of employing



different data representations, which either preserve or discard physics-based features present

in the images, such as lighting and shadows.

2. Related Work

Previous research has demonstrated that utilizing linear RGB or log RGB transformation

from raw data enhances the performance of a deep network in detection tasks when employing

the same network architecture on images of differing formats. The same research team also

suggested that log RGB data retains consistent structural information that might not necessarily

be present in data converted to compressed formats, such as JPEG sRGB.17 Moreover, log

RGB data empowers standard convolution layers to compute pixel ratios, which have proven

useful as illumination invariant features of objects.11 While these findings provide the foundation

for our investigation, our study aims to extend and validate these concepts even when the

original dataset is in JPEG sRGB format, as opposed to raw data.

3. Methods, Experiment, and Results

In pursuit of our research objectives, we centered our focus on a specific image

classification task known as "CatsOrDog."12 The CatsOrDog task entails distinguishing whether

an animal depicted in an image is a cat or a dog. It comprises an original dataset in sRGB color

space, presented in jpeg format. This setup offers a pertinent context for evaluating the

performance enhancements derived from employing linear and log RGB data transformations

on the original sRGB color space images stored in jpeg format.

3.1. Data Preparation

Our experimentation involves the utilization of a CNN model12 as our initial framework.

We meticulously processed the dataset, first transforming the sRGB color space into a linear

color space in PNG format using the Magick tool. Subsequently, the linear data was further



converted into log data in .exr format. This transformation was achieved by utilizing OpenCV to

load the linear data, adjusting the color space from BGR to RGB, performing geometric resizing

to 224 x 224, and subsequently saving the loaded image data (224x224x3)13 in log color space

within the .exr file format.

Geometric resizing varies for the log data compared to the other two types of data. Most

convolutional neural networks are accustomed to normalized or scaled images (x), often

undergoing a transformation of the form:

x’ = (x - mean) / stdev

This operation centers the values around zero, with the majority falling within the range

of -2 to 2. Another common scenario involves data normalized to the range of 0 to 1:

x’ = x / x_max

For the linear and JPEG data, the built-in resize method of the transforms class from

torchvision is used during the experiment. However, applying similar transformations to log

images disrupts the inherent relationships and yields unpredictable outcomes. Therefore,

geometric resizing for log data should be conducted in linear space before transforming to log

space, as resizing frequently involves pixel value interpolation – an operation best suited for

linear data. Subsequently, before saving the image, the loaded image data also needs to be

cast to float32 format because OpenCV reads images in float64 format which is not supported

by PyTorch. After the transformations, the image data is saved in .exr format. Consequently, we

have three datasets (Figure 1) — linear RGB, log RGB, and original JPEG data — to facilitate a

comprehensive performance comparison in the CatsOrDog task.



Figure 1. An example of three preprocessed image data inputs.

Following the data transformation, the sRGB and linear data are loaded using the

ImageFolder function in PyTorch, as .jpg and .png image formats are natively supported.

However, loading the log data demands additional steps due to the .exr file format not being

natively supported by PyTorch. Hence, using the ImageFolder to load all image files in the folder

is not feasible, as it processes images through PIL, which reduces them to 8-bits. Consequently,

a custom dataset must be created, implementing the PyTorch Dataset class and employing the

OpenCV library. This approach allows the log image data to be loaded into a float32 torch

tensor, enabling the compilation of all .exr images into a PyTorch-compatible dataset for training

and testing purposes.

3.2. Object Detection Experiment

The CNN structure used for the CatsOrDogs task consists of three convolutional layers

to extract features, along with two linear layers that include a ReLU activation in between for

classification purposes. The initial two convolutional layers employ 3x3 filters, while the last

convolutional layer adopts 5x5 filters, designed to extract complex features comprehensively.

The convolutional network consists of 3, 64, and 512 channels, respectively. Each convolutional

layer is succeeded by ReLU activation and a 2x2 max pooling layer. Following the third max

pooling layer, a dropout layer is introduced, employing a dropout rate of 0.3 to mitigate

overfitting. The final pooling layer possesses 512 channels and is fully connected to a 512-node



linear layer after flattening. The network is trained using CrossEntropy14 as the loss function and

Adam as the optimizer15. The learning rate for the log-based network was set at 1e-3,

maintaining consistency with the training of the other two data types. For each training iteration,

4000 cat images and 4000 dog images are utilized, while 1000 images of each species are

reserved for validation purposes. The selection of appropriate test data formats emerged as a

significant consideration. Consistency in data format between the training and testing data

proved vital in achieving accurate results during the experiment. To uphold this data

consistency, a uniform data format is employed throughout both the training and testing phases

of the network training process. For instance, if log data is used for training the network, log

data is also employed for testing the network's accuracy.

3.3 Result

Table 1 displays the resulting training and testing accuracy for the model training with

JPEG (2a), linear RGB (2b), and Log RGB (2c) data. Figures 2a, 2b, and 2c illustrate the

evolution of training and testing accuracies as well as losses throughout the entire 25 epochs of

the training process. In all experiments, we conducted network training at least twice and

presented results from the iteration with the best validation accuracy.

Set Number of
Epochs

JPEG linear RGB Log RGB

Train 25 93.9%/0.1446 94.16%/0.1388 98.36%/0.0457

Test 25 89.68%/0.27 93.8%/0.1612 91.67%/0.3046

Table 1. Accuracy/Loss for the JPEG (2a), linear RGB (2b),
and Log RGB (2c) networks for both train and test sets



Figure 2a. Training curves for the JPEG network
showing loss and accuracy for the train and test sets.

Figure 2b. Training curves for the linear network
showing loss and accuracy for the train and test sets.

Figure 2c. Training curves for the log network
showing loss and accuracy for the train and test sets.

As presented in Table 1, utilizing log data during both training and testing yielded the

highest training accuracy at 98.36%, albeit the test accuracy is approximately 2% lower than

that achieved by the linear network, which exhibited an impressive 93.8% accuracy. Notably,

both networks trained with linear and log data demonstrated higher training and testing

accuracy than the network trained with sRGB data. Another intriguing observation is that

employing log data during both training and testing led to a higher degree of overfitting, with the



testing accuracy being approximately 7% lower than the training accuracy. In comparison, the

network trained with sRGB data exhibited a difference of 4%, while the linear data-trained

network displayed a difference of 0.4%.

These outcomes align with the hypothesis that using linear and log data transformed

from sRGB data provides advantages to neural network performance, particularly in terms of

testing and training accuracy, even when the original data is already in a compressed form.

However, the anticipated result that log data, which retains the most physics features, would

yield the highest performance was not achieved.

4. Discussion and Conclusion

Our results and analysis support the hypothesis that using linear or log data enhances

performance in an object recognition task even when the data is transformed from compressed

JPEG format rather than RAW data.

CNNs are designed to process data with a grid-like topology, such as images composed

of pixels arranged in a 2D grid. The architecture of a CNN includes several layers, including

convolutional layers, pooling layers, and fully connected layers. Convolutional layers detect

features in the input image by applying learnable filters. These filters convolve with the input

image to generate feature maps, which are then processed through pooling layers to reduce

spatial dimensions and retain salient features. Fully connected layers process pooled feature

maps to produce final outputs, such as classification labels. As the original model proved overly

complex in feature detection and extraction, I reduced the total number of convolutional layers

and introduced an additional linear layer, resulting in a significant 6% increase in training

performance.

The log network displays a degree of overfitting as it excels in learning the training

dataset but performs less effectively on the testing dataset. PyTorch's DataLoader is employed

to enable data shuffling, aiding in reducing overfitting. Furthermore, overfitting is mitigated by



employing logarithmic test data (.exr files) for models trained on logarithmic training data, while

linear data (png files) and sRGB jpg files are better suited for other training scenarios.

Additionally, dropout regularization is utilized to adjust the network, aiming to decrease variance

between validation and training performance. However, employing a dropout layer with a

dropout rate exceeding 0.3 results in diminished training and testing accuracies, indicating

excessive neuron deactivation.16 Moreover, data augmentation is employed not only for

equitable experimentation but also to augment the training dataset, preventing overfitting and

promoting generalization.

In future work, overfitting could potentially be further diminished by experimenting with

different optimizers (e.g., AdamW) and tuning hyperparameters. Previous research suggests

that a smaller learning rate can yield more consistent log network training,15 and adjusting

default hyperparameters (e.g., epsilon) for ADAM can aid convergence for log networks.17 While

not attained in this research, I believe that resolving overfitting would likely enable log data to

achieve the highest training and testing accuracy.

Ideally, working with raw image data, devoid of compression artifacts and retaining

original color information, would offer a more accurate representation of underlying data

characteristics. Unfortunately, obtaining datasets with raw images proved challenging. Raw

image datasets suited to our research objectives were not readily accessible, limiting our ability

to fully exploit the potential benefits of our proposed data representation. Exploring alternative

techniques for data compression or preprocessing to minimize information loss could further

enhance the accuracy of our findings. Despite this limitation, our study yields meaningful

advancements and insights within the confines of the available dataset.

In conclusion, our research highlights the advantages of utilizing linear and log RGB

data transformed from compressed images as inputs for deep neural networks in computer

vision tasks. Using linear or log RGB images that preserve the principles of the physics of

reflection can simplify certain visual tasks and increase robustness to specific types of visual



variation. While restricted by model overfitting and dataset limitations, our study provides

valuable insights into the interplay between data representation, network architecture, and

preprocessing techniques. As the field of computer vision continues to evolve, our findings

serve as a foundational step for future inquiries, inspiring researchers to explore novel

strategies for leveraging data representations to achieve enhanced outcomes in deep learning.

8. References

1. B. V. Funt and M. S. Drew. Color space analysis of mutual illumination. IEEE Trans. on

Pattern Analysis and Machine Intelligence, 15(12):1319–1326, 1993.

2. G. D. Funka-Lea and R. Bajcsy. Combining color and geometry for the active, visual

recognition of shadows. In Proc. Fifth Int’l Conf. on Computer Vision, Cambridge, 1995.

3. Chen, Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun. Learning to see in the dark. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

3291-3300. 2018.

4. Apple. About apple proraw, 2022. URL https://support.apple.com/en-us/HT211965.

5. Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In IEEE conference on computer vision and

pattern recognition. IEEE, 2009.

6. Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James

Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft

COCO: Common Objects in Context, February 2015. URL

http://arxiv.org/abs/1405.0312. arXiv:1405.0312 [cs].

7. Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew

Zisserman. The Pascal Visual Object Classes (VOC) Challenge. International Journal of

Computer Vision, 88(2):303–338, June 2010. ISSN 1573- 1405. doi:

10.1007/s11263-009-0275-4. URL https://doi.org/10.1007/s11263-009-0275-4.



8. Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in

the wild: A database for studying face recognition in unconstrained environments.

Technical Report 07-49, University of Massachusetts, Amherst, October 2007.

9. Sean Bell, Kavita Bala, and Noah Snavely. Intrinsic images in the wild. ACM Trans.

Graphics (SIGGRAPH), 33(4), 2014.

10. Gang Fu, Qing Zhang, Qifeng Lin, Lei Zhu, and Chunxia Xiao. Learning to detect

specular highlights from real-world images. In Proceedings of the 28th ACM International

Conference on Multimedia, MM ’20, pages 1873–1881. Association for Computing

Machinery, 2020.

11. X. Wang, G. Doretto, T. Sebastian, J. Rittscher, and P. Tu. Shape and appearance

context modeling. In International Conference on Computer Vision, 2007.

12. https://www.kaggle.com/code/tirendazacademy/cats-dogs-classification-with-pytorch,

accessed by 8/16/2023.

13. Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "ImageNet classification with

deep convolutional neural networks." Communications of the ACM 60.6 (2017): 84-90.

14. Zhang, Zhilu, and Mert Sabuncu. "Generalized cross entropy loss for training deep

neural networks with noisy labels." Advances in neural information processing systems

31 (2018).

15. Dokkyun Yi, Jaehyun Ahn, and Sangmin Ji. An Effective Optimization Method for

Machine Learning Based on ADAM. Applied Sciences, 10(3):1073, January 2020. ISSN

2076-3417. doi: 10.3390/app10031073. URL

https://www.mdpi.com/2076-3417/10/3/1073. Number: 3 Publisher: Multidisciplinary

Digital Publishing Institute.

16. Pauls, Alexander, and J. Yoder. "Determining optimum drop-out rate for neural

networks." Midwest Instructional Computing Symposium (MICS). 2018.

17. Dr. Maxwell’s BMVC 2023 paper

https://www.kaggle.com/code/tirendazacademy/cats-dogs-classification-with-pytorch

